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Abstract

One enduring question in evolutionary biology is the extent of archaic admixture in the genomes of present-day populations.
In this paper, we present a test for ancient admixture that exploits the asymmetry in the frequencies of the two
nonconcordant gene trees in a three-population tree. This test was first applied to detect interbreeding between Neandertals
and modern humans. We derive the analytic expectation of a test statistic, called the D statistic, which is sensitive to
asymmetry under alternative demographic scenarios. We show that the D statistic is insensitive to some demographic
assumptions such as ancestral population sizes and requires only the assumption that the ancestral populations were
randomly mating. An important aspect of D statistics is that they can be used to detect archaic admixture even when
no archaic sample is available. We explore the effect of sequencing error on the false-positive rate of the test for admixture,
and we show how to estimate the proportion of archaic ancestry in the genomes of present-day populations. We also
investigate a model of subdivision in ancestral populations that can result in D statistics that indicate recent admixture.
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Introduction
Detecting ancient admixture and estimating the extent of
archaic ancestry in the genomes of present-day popula-
tions are of major importance for many aspects of evolu-
tionary biology (Barton 2001). Admixture occurs during
secondary contact between previously isolated popula-
tions, and it can play an important role in the speciation
process (Barton and Hewitt 1985; Barton 2001). Among
anthropologists, there is a long-standing debate on the re-
lationships betweenmodern humans and different groups of
archaic humans such as Neandertals. A recent analysis of
a draft sequence of the Neandertal genome suggested that
1–4% of genomes from people of Eurasian ancestry are de-
rived from Neandertal (Green et al. 2010). However, there is
still no consensus on the overall extent of interbreeding
between archaic and modern humans (for a review, see
Wall and Hammer 2006).

Methods for detecting and estimating archaic admixture
often rely on DNA sequence data from extent populations
only. One class of such methods relies on the signature that
ancient admixture leaves on patterns of linkage disequilib-
rium (Plagnol and Wall 2006; Wall et al. 2009). Although
they have the advantage of not relying on scarce or dam-
aged ancient DNA samples, they make simplifying assump-
tions about the demographic history of extant populations
that are not testable in general (Wall and Hammer 2006).
Another class of methods models genetic introgression us-
ing spatially explicit simulations. They aim to make predic-
tions about the proportion of introgression in present-day
genomes if ancient admixture had occurred. These methods

use either forward-in-time computer simulations (Currat
and Excoffier 2004) or deterministic modeling (Forhan
et al. 2008).

Recently, direct comparisons of DNA sequences be-
tween extant and archaic populations have been made
possible by the sequencing of ancient DNA samples. In hu-
mans, this line of research began with a comparison of
mitochondrial DNA between modern humans and Nean-
dertals (Krings et al. 1997; Serre et al. 2004; Green et al.
2008). It was then extended to fragments of Neandertal
nuclear DNA (Green et al. 2006; Noonan et al. 2006; Krause
et al. 2007; Lalueza-Fox et al. 2007); the full sequence of
Neandertals was finally analyzed in Green et al. (2010). Al-
though data from extinct populations are still limited, di-
rect comparison of ancient and modern sequences has the
potential to directly determine the proportion of present-
day genomes inherited from archaic populations (Wall
2000). Green et al. (2010) developed a formal test for ad-
mixture based on the direct comparison of DNA sequences
from Neandertals and modern human populations.

Green et al. (2010) defined a new statistic, called the D
statistic, to test for admixture between three closely related
populations. The expectation of D was derived under a sim-
ple model of admixture with constant population size and
was used to estimate the proportion of Neandertal ances-
try in modern humans (Green et al. 2010, Supplementary
Online Material 19). However, Green et al. (2010) noted
that their test relies on the assumption that the population
ancestral to the sampled populations was randomly mat-
ing. In this paper, we extend the results of Green et al.
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(2010) by deriving the expectation of D under a model
where the ancestral populations are not randomly mating.
We also study the statistical properties of D. In addition, we
explore the effects of sequencing error and ascertainment
bias on D, and we show that D can indicate past admixture
even when the admixing population is not sampled.

In a first section, we recall the definition of the D statistic
and why it is expected to detect admixture in the case of
randomly mating ancestral populations. Then we derive
the expectation of D under a model of admixture with arbi-
trarily varying ancestral population sizes, which generalizes
the model of admixture proposed in Green et al. (2010).
The derivation reveals a strategy to estimate the proportion
of archaic introgression in present-day genomes. In a next
section, we derive the expectation of D in a model where
the ancestral populations are not randomly mating and
show that ancient population structure can confound
the test for admixture. Then we determine the effect of
sequencing error on D, and we study the power of the test
for admixture on synthetic data. When D is computed
from genotype data, we determine the impact of ascertain-
ment bias on the test for admixture. Although Green et al.
(2010) defined D to compare the Neandertal genome
with the sequences of modern humans, we show that
D statistics can be used to test for admixture when no
archaic sample is available. Finally, we apply the test to
the Neandertal data published in Green et al. (2010).

Materials and Methods

A Four-Taxon Statistic to Test for Admixture
Assume that we have sequenced one chromosome from
two present-day populations and denote by P1 and P2
those populations. Furthermore, assume that we have sam-
pled one chromosome from an archaic population, which
we denote as P3, and one chromosome from an outgroup
population, denoted O. Suppose that the four sequences
were aligned without error. The null hypothesis that we
wish to test is a demographic scenario in which P1 and
P2 descend from a common ancestral population that di-
verged from the ancestors of P3 at an earlier time, without
any gene flow between P3 and P1 or P2 after they split. The
alternative hypothesis is that P3 exchanged genes with P1
or P2 after these two populations diverged.

We first restrict to positions in the genome where we
have coverage for P1, P2, P3, and O. We denote the out-
group allele as ‘‘A’’ and restrict our analysis to biallelic sites
at which P1 and P2 differ and the alternative allele ‘‘B’’ is
seen in P3. At these sites, we have observed two copies
of both alleles, making it less likely that the patterns we
analyze have arisen because of sequencing error.

For the ordered set {P1, P2, P3, O}, we call the two allelic
configurations of interest ‘‘ABBA’’ or ‘‘BABA.’’ The pattern
ABBA refers to biallelic sites where P1 has the outgroup
allele and P2 and P3 share the derived copy. The pattern
BABA corresponds to sites where P1 and P3 share the de-
rived allele and P2 has the outgroup allele. Green et al.
(2010) defined a statistic corresponding to the difference

in the counts of ABBA and BABA sites across the n base
pairs for which we have data of all four samples, normalized
by the total number of observations. In this statistic,
CABBA(i) and CBABA(i) are indicator variables; they can be
0 or 1 depending on whether an ABBA or a BABA pattern
is seen at base i. Green et al. (2010) denoted this statistic by
D, and we have

DðP1; P2; P3;OÞ5
Pn

i5 1 CABBAðiÞ � CBABAðiÞPn
i5 1 CABBAðiÞ þ CBABAðiÞ

: ð1Þ

We further denote by S(P1, P2, P3, O) the numerator of
D(P1, P2, P3, O).

Under the null hypothesis that P1 and P2 descend from
a common ancestral population that diverged at an earlier
time from the ancestral population of P3, and if the ances-
tral population of P1, P2, and P3 was panmictic, then de-
rived alleles in P3 should match derived alleles in P1 and
P2 equally often. This is because the patterns ABBA and
BABA can only arise from gene trees that are nonconcord-
ant with the population tree of P1, P2, and P3. Under the
null hypothesis, the two nonconcordant gene trees should
occur with equal frequencies (Tajima 1983; Hudson 1983),
and D should equal zero. There are three classes of events
that can produce a significant deviation from the null hy-
pothesis. First, P3 exchanged genes with P1 or P2. Then the
population ancestral to P1, P2, and P3 may have been struc-
tured in such a way that one of the two non-concordant
gene trees occurs more often than the other. Alternatively,
P1 or P2 could have received genes from an unsampled
ghost population that we denote as PG. Note that PG needs
to be at least as diverged as P3 from (P1, P2) for D to differ
significantly from zero (supplementary fig. S1, Supplemen-
tary Material online). Also note that gene flow between P1
and P2, or between P3 and the ancestor of P1 and P2, is not
expected to produce a deviation from the null hypothesis.

Although D statistics are primarily designed to be ap-
plied on sequence data, they can be readily computed
on single nucleotide polymorphism (SNP) data. Assume
that n SNPs were genotyped in populations P1, P2, P3,
and O. Denote by p̂ij the observed frequency of SNP i in
population Pj (j 5 4 denotes population O). We have

DðP1; P2; P3;OÞ

5

Pn
i5 1½ð1� p̂i1Þp̂i2p̂i3ð1� p̂i4Þ � p̂i1ð1� p̂i2Þp̂i3ð1� p̂i4Þ�Pn
i5 1½ð1� p̂i1Þp̂i2p̂i3ð1� p̂i4Þ þ p̂i1ð1� p̂i2Þp̂i3ð1� p̂i4Þ�

:

ð2Þ

Thus, computing D on genotype data is straightforward.
However, the way SNPs were ascertained can bias estimates
of allele frequencies in the different populations (Eberle and
Kruglyak 2000; Kuhner et al. 2000; Clark et al. 2005).

A Genealogical Argument for the Expected
Frequencies of ABBA and BABA Sites
Assume that a single nucleotide substitution occurred on
the gene genealogy representing the ancestry of the four
samples (P1, P2, P3, and O). There are three possible topol-
ogies of the gene genealogy, assuming that O is the
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outgroup. Each of these topologies has four branches on
which a mutation can create a derived allele in P1, P2,
and P3. Figure 1 presents the 12 possible configurations
for the four samples P1, P2, P3, and O, assuming that O car-
ries the ancestral allele. The pattern BABA (P1 and P3 have
the derived nucleotide) is consistent only with tree IIc. The
length of the internal branch represents the time during
which a mutation can produce the BABA pattern. Similarly,
the pattern ABBA (P2 and P3 have the derived nucleotide)
is consistent only with tree IIIc, and the length of that in-
ternal branch is the time during which mutation can create
ABBA. The probability that a randomly chosen site will
have either pattern is the probability of the appropriate
topology multiplied by the expected branch length multi-
plied by the mutation rate, l. Thus, to derive the expected
frequencies of patterns ABBA and BABA, we need to com-
pute the probabilities of the corresponding tree topologies
and average lengths of the relevant branches under the
demographic scenario relating P1, P2, and P3.

In what follows, we derive the expected frequencies of
patterns ABBA and BABA under a simple demographic
model of ancient admixture. We use this model to show
that the test is not confounded by demographic events
other than admixture, assuming that the population
ancestral to P1, P2, and P3 was panmictic.

Instantaneous Unidirectional Admixture
In this model, we assume that there was a single episode
of admixture at time tGF in the past (t 5 0 being the pres-
ent) from population P3 to P2 after the separation of

populations P1 and P2 (fig. 2). With probability f, the P2
lineage was derived from a lineage from P3. The parameter
f represents the fraction of the genomes in P2 that origi-
nated from P3. We define the divergence time of P1 and
P2 populations as tP2 . tGF. We denote by tP3 . tP2 the
divergence time of P3 and the population ancestral to
P1 and P2, denoted P(12). At generation t in the past, the
effective population size of the P3 population is N3(t);
the effective size of P(12) is N(12)(t); and the effective size
of the population ancestral to P1, P2, and P3, denoted
P(123), is N(123)(t). All the populations are assumed to be
unstructured (i.e., they are randomly mating). We denote
by IUA the instantaneous unidirectional admixture model.

Expected Counts of ABBA and BABA under the Model of
Instantaneous Admixture
Under the IUA model, there are three classes of events that
can produce the patterns ABBA and BABA. The first class
corresponds to the case where the P2 lineage did not orig-
inate from P3. It occurs with probability 1� f. In the second
class of events, the P2 lineage traces its ancestry in P3 (prob-
ability f), but the P2 and P3 lineages did not coalesce before
tP3. The third class corresponds to the case where the P2
lineage originated from P3 (probability f) and the P2 and
P3 lineages coalesced before tP3. The first two classes pro-
duce patterns ABBA and BABAwith equal frequencies. This
is because, assuming that P(123) was panmictic, the P3 lin-
eage coalesces first with probability 1/3. The third class of
event produces only ABBA because the P2 and P3 lineages
coalesced first. The probabilities of ABBA and BABA are
derived in Appendix 1 for a model with arbitrary varying

FIG. 1. There are three possible topologies of the gene genealogies, I, II, and III, that can relate samples P1, P2, and P3, and the outgroup O.
Assuming that any polymorphisms reflect a single historical mutation, ABBA sites can occur only on a type III gene genealogy due to
a mutation that occurs on the branch ancestral to samples P2 and P3 (IIIc), and BABA sites can occur only on a type II gene genealogy due to
a mutation on the branch ancestral to samples P1 and P3 (IIc).
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population size in P3 and P(12) and constant population size
in P(123).

Green et al. (2010) studied the simplified case where
population size is constant. When we set N3(t) 5

N(12)(t)5 N(123)5 N in Appendix 1, we find, in accordance
with Green et al. (2010), that

PrðABBAÞ5 l

�
fðtP3 � tGFÞ þ ð1 � fÞ

�
1 � 1

2N

�tP3 � tP22N

3

þ f

�
1 � 1

2N

�tP3 � tGF2N

3

�
ð3Þ

and

PrðBABAÞ5 l

�
ð1 � fÞ

�
1 � 1

2N

�tP3 � tP22N

3

þ f

�
1 � 1

2N

�tP3 � tGF2N

3

�
; ð4Þ

where l denotes the per base mutation rate. In this case, the
expectation of D reduces to

E½DðP1; P2; P3;OÞ�

5
PrðABBAÞ � PrðBABAÞ
PrðABBAÞ þ PrðBABAÞ

5
3f ½tP3 � tGF�

3f ½tP3 � tGF� þ 4Nð1� fÞð1� 1
2N Þ

tP3�tP2þ 4Nfð1� 1
2N Þ

tP3�tGF
:

ð5Þ

Note that the test statistic equals 0 when there is no admix-
ture (f 5 0). If there is admixture (f . 0), D tends to one when
tP3 – tGF becomes large. This is because the P2 and P3 lineages
have more time to coalesce as tP3 – tGF increases. Finally, in the
case of constant ancestral population size, D tends to 0 when
the effective population size becomes large. This is explained
by the fact that when N is large, then the probability that the
P2 and P3 lineages coalesce in P3 is small.

A Test for Admixture Insensitive to Many Demographic

Assumptions
Under the IUA model, equation (A1.5) shows that E[D(P1,
P2, P3, O)]5 0 if and only if f 5 0 or tGF 5 tP3, regardless of
the population size fluctuations of P1, P2, P3, P(12), and P(123)
(as long as population sizes stay finite) and regardless of the
times of population divergences and admixture (as long as
tGF, tP3). Note that a model with tGF5 tP3 is equivalent to
a model without admixture (see fig. 2). Thus, under the IUA
model assumptions, a significant deviation from 0 of D(P1,
P2, P3, O) indicates that P3 exchanged genes with P1 (D(P1,
P2, P3, O) , 0) or P2 (D(P1, P2, P3, O) . 0). Although we
modeled admixture with an instantaneous episode of gene
flow, this conclusion holds for ongoing migration between
P3 and P2 or P1.

Sites involved in the computation of D are likely to be in
linkage disequilibrium. Therefore, a simple binomial test to
assess whether D significantly differs from zero is not ap-
propriate. Instead, the test significance can be assessed us-
ing a standard block jackknife procedure (Efron 1981). In

this procedure, one removes blocks of adjacent sites one
at a time. The size of blocks should be chosen to be larger
than the extent of linkage disequilibrium. By computing
the variance of the D statistic over the sequences M times
leaving each block of the sequence in turn, and then mul-
tiplying by M and taking the square root, we can obtain an
approximately normally distributed standard error using
the theory of the jackknife (Reich et al. 2009).

Constraining the Admixture Proportion
D statistics depend on the demographic parameters in
a complex way. As such, they are not good candidates
to estimate demographic parameters. However, Appen-
dix 1 shows that the numerator of D, denoted S, is a much
simpler function of demographic parameters; for a model
with arbitrary varying population sizes, we have

SðP1; P2; P3;OÞ5 f

"
1 � e

Ð tP3

tGF

1

2N3ðxÞ
dx
#
ðtP3 þ �tPð123Þ

� ðtGF þ t�ÞÞ; ð6Þ

where �tPð123Þ is the expected time of coalescence of two lin-
eages in P(123) and t* is the expected time of coalescence of

FIG. 2. Model of IUA. P1 and P2 split at time tP2. P3 splits from the
ancestral population of P1 and P2, denoted P(12), at time tP3. A single
episode of admixture takes place from P3 to P2 at time tGF. We
denote by f the admixture proportion, which is the proportion of P3
ancestry in P2 individuals at time tGF. We denote by N3(t), N(12)(t),
and N(123)(t) the size of populations P3, P(12), and P(123) at
generation t in the past. The sizes of populations P1 and P2 do
not influence D statistics.
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two lineages in P3, given that they coalesced between tGF and
tP3. The time�tPð123Þ is equal to 2N(123) in Appendix 1 where we
assumed constant population size in P(123). Assume now that
we have sampled a second lineage in P3. Denote by P3,1 and
P3,2 the two lineages sampled in P3. It is straightforward to see
that S(P1, P3,1, P3,2, O) is equal to S(P1, P2, P3, O) with f5 1 and
tGF5 0 because populations P2 and P3 are identical with such
parameter values. Therefore,

SðP1; P3;1; P3;2;OÞ5
"
1 � e

ðtP3

0

1

2N3ðxÞ
dx
#
ðtP3 þ �tPð123Þ

� ðtGF þ t��ÞÞ;
ð7Þ

where t** is the expected time of coalescence of two lineages
in P3, given that they coalesced between t 5 0 and tP3. Thus,
S(P1, P2, P3, O)/S(P1, P3,1, P3,2, O) is an upper bound for f. In the
case of constant ancestral population size, we have

SðP1; P2; P3;OÞ
SðP1; P3;1; P3;2;OÞ

5 f
tP3 � tGF

tP3
: ð8Þ

If we assume that tGF is small compared with tP3, then
one can estimate f by f̂5 SðP1;P2;P3;OÞ

SðP1;P3;1;P3;2;OÞ, which is a conservative
minimum.

We note here that the strategy to estimate the admix-
ture proportion can be extended to more populations. As-
sume that a sample from a sister population of P3 is
available. Denote by P4 this population and assume that
it diverged from P3 before the admixture event (tP4 .

tGF, where tP4 is the time of divergence of P3 and P4) (sup-
plementary fig. S2, Supplementary Material online). Then

f̂5 SðP1;P2;P4;OÞ
SðP1;P3;P4;OÞ is an unbiased estimate of the admixture

proportion independent of population sizes and diver-
gence times.

Testing for Admixture without Archaic Sample
In practice, it may be very common that no sample from
the admixing archaic population is available. On the other
hand, it may be fairly easy to sample from other extant
populations. Assume that a sample from an outgroup to
P1 and P2 is available and denote by P0 this population.
Assume that P0 did not exchange genes with P1 or P2.
Let tP0 be the time of divergence of P0 and the population
ancestral to P1 and P2 (see supplementary fig. S3, Supple-
mentary Material online). We can then derive D(P2, P1, P0,
O) following the same methodology as in Appendix 1. In
the case where population size is constant and equal to N
in all ancestral populations, we have

E½DðP2; P1; P0;OÞ�

5
PrðABBAÞ � PrðBABAÞ
PrðABBAÞ þ PrðBABAÞ

5
3f ½tP3 � tP0�

3f ½tP3 � tP0� þ 4Nð1� fÞð1� 1
2N Þ

tP0�tP1þ 4Nfð1� 1
2N Þ

tP3�tP0
:

ð9Þ

It is remarkable that equation (9) does not depend on the
time of admixture, tGF, which is likely to be unknown. It does

depend, however, on the time of divergence of the archaic
population, tP3. Using two samples from P0 or P1, one can con-
strain the admixture proportion by using the same strategy as
the one using two samples from P3.

Ancestral Subdivision
Here we derive the expected frequencies of patterns ABBA
and BABA under a simple model in which the ancestral
population of P1, P2, and P3 is not panmictic. We assume
that the ancestral populations P(12) and P(123) were struc-
tured in two random mating subpopulations (fig. 3). We
denote by P(12),1 and P(12),2 the subpopulations in P(12)
and by P(123),1 and P(123),2 in P(123). We assume that subpo-
pulations exchange migrants at symmetrical rate m per
generation. At time T in the past, subpopulations merge
into one panmictic population. We assume constant pop-
ulation size N in all ancestral populations. A similar model
was proposed in Slatkin and Pollack (2008). Slatkin and Pol-
lack (2008) showed that, for large values of T, the

FIG. 3. Model of ancient subdivision (AS). P1 and P2 definitively split
at time tP2. The ancestral population of P1 and P2 is subdivided in
two subpopulations, denoted P(12),1 and P(12),2. The two subpopu-
lations exchange migrants at rate m. P3 splits at time tP3. The
subdivision persists in the ancestral population of P(12),1, P(12),2, and
P3. We denote by P(123),1 the population ancestral to P(12),1 and by
P(123),2 the ancestral population of P(12),2. These two subpopulations
exchange migrants at rate m. Subpopulations merge at time T . tP3.
All population sizes are constant and equal to N.
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nonconcordant gene tree compatible with pattern ABBA
occurred with higher frequency than the other noncon-
cordant gene tree. For small values of m, its frequency is
even higher than the frequency of the concordant gene
tree. We use AS to denote the ancestral subdivision model.

Five-State Markov Chain in P(12)

To analyze the ancestry of the P1 and P2 lineages in P(12), we
use a Markov chain method similar to the one developed by
Slatkin and Pollack (2008). The states of the Markov chain
are as follows: state 1, P1 is in P(12),1 and P2 is in P(12),2 (initial
state); state 2, P1 is in P(12),2 and P2 is in P(12),1; state 3, P1 and
P2 are both in P(12),1; state 4, P1 and P2 are both in P(12),2, and
state 5, P1 and P2 coalesced (absorbing state).

To write the transition probabilities, we assume that m is
small enough that only one lineage can migrate to another
subpopulation per generation. Moreover, coalescent and
migration events cannot occur at the same generation. As-
suming constant population size N in P(12),1 and P(12),2, the
nonzero off-diagonal elements of the transition matrix P(12)

are

p
ð12Þ
13 5 p

ð12Þ
14 5 p

ð12Þ
23 5 p

ð12Þ
24 5 p

ð12Þ
31 5 p

ð12Þ
34 5 p

ð12Þ
41 5 p

ð12Þ
42 5m;

p
ð12Þ
35 5 p

ð12Þ
45 5 1

2N :

At time tP3, the distribution of states is pð12ÞðtP3Þ5
pð12ÞðtP2ÞðPð12ÞÞtP3�tP2 , where pð12ÞðtP2Þ5f1; 0; 0; 0; 0g.

Thirteen-State Markov Chain in P(123)

Tomodel the ancestry of P1, P2, and P3 in P(123), we use a 13-
state Markov chain with states defined by state 1, P3, P2 j P1;
state 2, P1, P3 j P2; state 3, P1, P2 j P3; state 4, P1, P2, P3; state 5,
(P2, P3) j P1; state 6, (P1, P3) j P2; state 7, (P1, P2) j P3; state 8,
(P2, P3), P1; state 9, (P1, P3), P2; state 10, (P1, P2), P3; state 11,
((P2, P3), P1); state 12, ((P1, P3), P2), and state 13, ((P1, P2),
P3). We used the symbol ‘‘j’’ to denote that lineages are in
different subpopulations and brackets denote coalescence
events. For example, state 6 takes into account the case
where P1 and P3 lineages have coalesced, and the resulting
ancestral lineage is in a different subpopulation than the P2
lineage.

Again we assume that m is small enough that only one
lineage can migrate to another subpopulation per genera-
tion and that coalescent and migration events cannot oc-
cur at the same generation. Assuming constant population
size N in P(123),1 and P(123),2, the nonzero off-diagonal ele-
ments of the transition matrix P(123) are

p
ð123Þ
12 5 p

ð123Þ
13 5 p

ð123Þ
14 5 p

ð123Þ
21 5 p

ð123Þ
23 5 p

ð123Þ
24 5 p

ð123Þ
31

5 p
ð123Þ
32 5 p

ð123Þ
34 5 p

ð123Þ
58 5 p

ð123Þ
85 5 p

ð123Þ
69 5 p

ð123Þ
96

5 p
ð123Þ
7;10 5 p

ð123Þ
10;7 5m;

p
ð123Þ
15 5 p

ð123Þ
26 5 p

ð123Þ
37 5 p

ð123Þ
48 5 p

ð123Þ
49 5 p

ð123Þ
4;10 5

1

2N
:

At time T, the distribution of states is pð123ÞðtP3Þ5
pð123ÞðtP3ÞðPð123ÞÞT�tP3 , where pð123ÞðtP3Þ5fpð12Þ1 ; pð12Þ2 ; pð12Þ3 ;
pð12Þ4 ; 0; 0; pð12Þ5 ; 0; 0; 0; 0; 0; 0g:

Events (coalescence and/or migration) in P(12) only af-
fect the expected value of D by changing the starting

probabilities in P(123). Appendix 2 presents the details
of all the possible cases leading to ABBA and BABA pat-
terns at time T, where all subpopulations merge into a sin-
gle random mating population.

The frequencies of patterns ABBA and BABA have no
simple analytical expressions under the AS model. How-
ever, they can be easily computed numerically for any
set of parameter values.

Expected Coalescence Time Conditional on Gene
Tree Topology
In this section, we derive the expected coalescence time of
P2 and P3, given that they coalesced first, under the IUA
and the AS models. This is a quantity of interest because it
determines the length of the internal branch of tree to-
pology III (fig. 1), and therefore the frequency of pattern
ABBA. We use these derivations to illustrate the con-
founding effect of ancestral subdivision on the test for ad-
mixture.

We denote by sðIUAÞ23 the expected coalescence time of P2
and P3, given that they coalesced first, under the IUAmodel
with constant ancestral population size. It can be decom-
posed as the sum of two terms, depending on whether the
P2 lineage originated from P3 or not:

sðIUAÞ23 5 f

��
1 �

�
1 � 1

2N

�tP3 � tGF�
t�

þ 1

3

�
1 � 1

2N

�tP3 � tGF� 2N

3
þ tP3

��

þ ð1 � fÞ
3

�
1 � 1

2N

�tP3 � tP2� 2N

3
þ tP3

�
;

ð10Þ

where t* is the expected time of coalescence of P2 and P3 given
that they coalesce between tGF and tP3 (Appendix 1, eq. A1.3).

Then we derive the conditional expected time of coales-
cence of P2 and P3 under the AS model, denoted sðASÞ23 . We
start by conditioning on whether coalescence occurs before
time T:

sðASÞ23 5 ðsðASÞ23 jsðASÞ23 � TÞPrðsðASÞ23 � TÞ
þ ðsðASÞ23 jsðASÞ23 . TÞPrðsðASÞ23 . TÞ: ð11Þ

The first term is equal to the expected time for the Markov
chain to first hit state 5, 8, or 11, conditional on this time
being lower than T; we compute it using standard Markov
chain theory. It can be shown that this conditional time
tends to 4N þ 1/(2m) when T grows to infinity, which is
equal to the expected coalescence time of two individuals
in different demes in a two-island model (Slatkin 1991). Be-
cause the ancestral population is assumed to be panmictic
after time T, the second term of equation (10) is equal to

ðsðASÞ23 jsðASÞ23 . TÞPrðsðASÞ23 . TÞ5 1

3

�
tP3 þ 2N

3

�X4
i5 1

pð123Þi ðTÞ:

ð12Þ

Although there is no simple analytical expression for sðASÞ23 , it
can be computed numerically for any set of parameter
values.
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Effect of Sequencing Error on D Statistics
In this section, we study the effect of sequencing error on D.
In what follows, we use capital letters to denote the ob-
served count of a pattern and small letters to denote the
true counts in the absence of sequencing error. We assume
that sequencing error is uniform along the sequence. We
denote by e1, e2, e3, and e4 the probability that a base
was incorrectly read in population P1, P2, P3, and O, respec-
tively. Let eij be the probability that a site was read with an
error in populations Pi and Pj at the same time (j5 4denotes
populationO).Weneglect termsof higher order. A sequenc-
ing error on O will cause the reads for P1, P2, and P3 to be
mislabeled. For example, if Owas sequencedwith an error at
a site where the true pattern is ‘‘aaaa’’, we would read pat-
tern ‘‘BBBA.’’ Thus, for the two patterns of interest, we have

nABBA 5 e1nbbba þ e2naaba þ e3nabaa þ e4nbaaa þ nabba

þ e12nbaba þ e13nbbaa þ e14naaaa

þ e23naaaa þ e24nbbaa

þ e34nbaba

ð13Þ

and

nBABA 5 e1naaba þ e2nbbba þ e3nbaaa þ e4nabaa þ nbaba

þ e12nabba þ e13naaaa þ e14nbbaa

þ e23nbbaa þ e24naaaa

þ e34nabba

ð14Þ

assuming that error rates are small.

False-Positive Rate in the Presence of Sequencing Error
Here we look at the effect of sequencing error on the false-
positive rate of the test for admixture. We assume a null
model with no admixture and randomly mating ancestral
populations. In this model, the true expected counts verify
nabba 5 nbaba and nabaa 5 nbaaa. The second equality as-
sumes that the mutation rates in P1 and P2 are equal. Under
these assumptions, we have

nABBA � nBABA 5 ðe1 � e2Þðnbbba � naabaÞ þ ðe14 þ
e23 � e13 � e24Þðnaaaa � nbbaaÞ:

ð15Þ

The effect of sequencing error on D(P1, P2, P3, O) is then

If the sequencing error rates are the same for the four samples,
then sequencing error will have no influence on the false-pos-
itive rate of the test as long as they are small enough that
third-order terms can be ignored.

To illustrate the effect of different sequencing error rates
on the false-positive rate of the test, note that in the case

where the outgroup divergence time, tO, is large compared
with the divergence time of P3, the two dominant patterns
will be bbba and aaaa. We considered a case where 98% of
sites were aaaa, 0.02% abba and baba, and 1.97% bbba. All
other configurations represented 0.01% of sites. We took
109 sites in total. This settings roughly correspond to a pop-
ulation tree where P1 and P2 are modern human popula-
tions, P3 is a Neandertal population, and Chimpanzee is the
outgroup. Indeed, Green et al. (2010) estimated that the
time of divergence of Neandertal and modern humans
was less than 440,000 years before present, which is small
compared with divergence time of modern humans and
chimpanzee.

Under the simplifying assumption that sites are inde-
pendent, true pattern counts abba and baba follow a bino-
mial distribution with parameters p 5 0.5 and n 5 nabba þ
nbaba. In this case, the standard deviation (SD) of D is equal
to 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25=ðnabba þ nbabaÞ

p
50:0022.

Synthetic Data Analysis
Power of the Test for Admixture
In order to assess the power of the test for admixture, we
simulated data under different demographic scenarios. To
simulate counts for ABBA and BABA patterns, we simu-
lated trees using the ms software (Hudson 2002). We then
placed a mutation on the tree; the branch it fell on was
selected with probability proportional to its length. The de-
scendants of the mutated branch then define which pat-
tern was generated. Under this simulation scheme, the
number of independent ms replicates corresponds to
the number of unlinked polymorphic sites in the three
populations P1, P2, and P3. For all the demographic scenar-
ios described below, we varied this number between 10,000
and 1,000,000.

We simulated counts for ABBA and BABA patterns un-
der the IUA model. The time of divergence of P1 and P2 was
set to tP2 5 3,000 generations. P3 diverged from the ances-
tral population P(123) at time tP3 5 12,000 generations. Ad-
mixture occurred at time tGF 5 2,500 generations. We
considered different cases for the ancestral population
sizes: constant size N 5 10,000 in all populations; a bottle-
neck in P3 prior to the admixture event; and a bottleneck in
P(12). Both bottlenecks involved a 100-fold reduction in

population size and lasted for 1,000 generations. They both
started at 3,500 generations in the past. We also considered
a case where P1 and P2 exchanged migrants at rate 2Nm 5

0.5 between t 5 0 and tP2. We varied the admixture pro-
portion f from 0 (no admixture) to 0.1 (10% introgression
from P3 into P2).

DðP1; P2; P3;OÞ5
ðe1 � e2Þðnbbba � naabaÞ þ ðe14 þ e23 � e13 � e24Þðnaaaa � nbbaaÞ

nabba þ nbaba þ ðe1 þ e2Þðnbbba þ naabaÞ þ ðe14 þ e23 þ e13 þ e24Þðnaaaa þ nbbaaÞ þ 2ðe3 þ e4Þnabaa
:

ð16Þ
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Because replicates are independent, D is approximately
normally distributed, and its SD can be computed from the
binomial distribution: SDðDÞ52

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25=ðnABBA þ nBABAÞ

p
.

Each simulation class was repeated 1,000 times. We com-
puted the power of the test for admixture as the propor-
tions of the 1,000 repetitions were jDj was larger than
twice its standard error. For the simulations without ad-
mixture, we expect that roughly 95% of the simulated D
statistics will be comprised between plus or minus twice
the SD.

Effect of Ascertainment Bias
When computed on genotype data, the way SNPs were as-
certained can bias D statistics. Typically, an ascertainment
scheme consists of two phases. First, SNPs are discovered
from the genetic material of a small group of individuals,
called the discovery panel. Then the discovered SNPs are
typed in a larger sample (Eberle and Kruglyak 2000). The
extent to which the ascertainment scheme will bias D sta-
tistics depends on many parameters, such as the genetic
composition of the discovery panel and its relationship
to the larger samples. Ascertainment bias can be corrected
when one assumes that the discovery panel is a random
sample from the studied population (Nielsen et al. 2004).
However, in the context of D statistics, the relationship be-
tween the discovery sample and the four typed populations
P1, P2, P3, and O can be complex.

To illustrate the effect of a simple ascertainment
scheme on D statistics, we simulated genotype data under
the IUAmodel using 100,000 independent replicates of ms
(Hudson 2002). The time of divergence of P1 and P2 was
set to tP2 5 3,000 generations. P3 diverged from the an-
cestral population P(123) at time tP3 5 12,000 generations.
Admixture occurred at time tGF 5 2,500 generations. All
population sizes were set equal to N 5 10,000. We sim-
ulated 100 individuals in P1 and P2 and 1 individual in P3.
To simulate ascertainment bias, we subsampled individ-
uals in P1 or P2 and kept only sites that were variable
in those individuals. In total, we explored five subsampling
scenarios: 1) 2 individuals from P1; 2) 20 individuals from
P1; 3) 2 individuals from P2; 4) 20 individuals from P2;
and 5) no subsampling (no ascertainment bias). Each
of these five subsampling scenarios was repeated for
f 5 0 (no admixture) and f 5 0.05 (5% introgression from
P3 into P2).

Application to Neandertal Data
The Neandertal genome was recently sequenced to ;1�
coverage, producing a total of ;4 billon base pairs (Green
et al. 2010). Green et al. (2010) analyzed data from five
present-day human males from the CEPH-Human Genome
Diversity Project panel (French, Han, Papuan, San, and Yor-
uba) that were sequenced to ;5� coverage. For each pair
of modern humans P1 and P2, Green et al. (2010) computed
D(P1, P2, Neandertal, Chimpanzee). The chimpanzee indi-
vidual was represented by the reference chimpanzee
genome (PanTro2).

Results

Ancient Subdivision Confounds the Test for
Admixture
We computed D(P1, P2, P3, O) under the IUA and the AS
models (Appendices 1 and 2) for parameter values tGF 5
2,500, tP2 5 3,000, tP3 5 12,000, T 5 25,000 (times in gen-
erations), and a constant ancestral population size equal to
N 5 10,000. Figure 4A displays D statistics as a function of f
(IUA) and 2Nm (AS). We also computed the expected time
of coalescence of P2 and P3 given that they coalesced first.

Figure 4B displays sðIUAÞ23 as a function of f and sðASÞ23 as a func-
tion of 2Nm. We used a computer algebra program to com-
pute numerically quantities under the AS model.

The D statistic curves intersect, which shows that both
the IUA and the AS models can be made to fit data if P3
shares more derived allele with P1 or P2. Therefore, the test
for admixture based on D alone will always be confounded
by the presence of ancestral subdivision.

More generally, figure 4B shows that the IUA and the AS
models predict the same expected coalescence times for
some parameter values. Thus, any test for admixture solely
based on expected coalescence times between one lineage

FIG. 4. D statistics and expected coalescence time of P2 and P3 under
the IUA and AS models. We assumed parameter values of tGF 5

2,500, tP2 5 3,000, tP3 5 12,000, T 5 25,000 (times in generations),
and a constant ancestral population size equal to N 5 10,000. (A)
D(P1, P2, P3, O) as a function of f (IUA) and 2Nm (AS). (B) Expected
internal branch length (IBL) for topologies where P2 and P3 coalesced
first as a function of f (IUA) and 2Nm (AS). The rescaling for 2Nm on
(A) and (B) was chosen so that 2Nm and f vary in the same range.
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from different populations will be confounded by nonran-
dom mating in ancestral populations.

Robustness to Sequencing Error
We assume a background sequencing error of 0.001 in each
sample. Figure 5 plots D against e1 � e2, keeping e1 þ e2 5
0.002 and e3 5 e4 5 0.001. If we assume that the sequenc-
ing error rate in two populations is the product of error
rates in each of the two populations (i.e., errors are inde-
pendent in the two populations), then a difference in se-
quencing error rates e1 � e2 5 0.00011 will cause the test
for admixture to produce false-positive results. If we as-
sume that the probability to sequence two populations
with an error at the same base is only one order of mag-
nitude lower than the error rate in one population, then
differences in error rates of 0.00008 will create false posi-
tives. In the worst-case scenario, where sequencing error
in two populations is of the same order of magnitude as
sequencing error in one populations, then e1 � e2 5

0.000045 is enough to create false positives.

Power of the Test for Admixture
Figure 6 reports the power analysis for the simulations of
instantaneous admixture with constant population size,
a bottleneck in P3, a bottleneck in P(12), and migration be-
tween P1 and P2. Adding a bottleneck in P3 increased the
power of the test substantially; this is because, if the P2 lin-
eage originated from P3, the bottleneck increases the prob-
ability that the P2 and P3 lineages coalesce before tP3.
Adding a bottleneck in P(12) improved the power of the
test even more. This is because, in the case where admix-
ture did not happen (eq. A1.1), the probability that the P1
and P2 lineages do not coalesce before tP3 is decreased by
the bottleneck. Therefore, this case contributes less to the
denominator of D. Migration between P1 and P2 decreased
the power of the test for admixture.

For the simulations without admixture (f 5 0), figure 6
reports the false-positive rate of the test for admixture at

a 5% level. In the case of constant population size, the false-
positive rate was 0.050 for 10,000 sites and 0.046 for 100,000
sites. This is an expected result as D is approximately nor-
mally distributed for independent sites. Plus or minus
twice the SD represents roughly a 95% confidence interval
for D. As predicted, adding bottlenecks in the ancestral
populations, or migration between P1 and P2, did not sig-
nificantly affect the false-positive rate of the test.

Robustness to Ascertainment Bias
For data simulated without admixture (f 5 0), D(P1, P2, P3,
O) did not differ significantly from 0 regardless of the as-
certainment scheme used. More precisely, we obtained the
following values for D(P1, P2, P3, O) under each scheme: 1)

FIG. 6. Power of the test for admixture. We simulated (A) 10,000
unlinked polymorphic sites and (B) 100,000 unlinked polymorphic
sites. Dots: no bottleneck and no migration between P1 and P2.
Circles: bottleneck in the ancestral population of P1 and P2. Grey
triangles: bottleneck in P3. Squares: ongoing migration between P1
and P2 at rate 2Nm 5 0.5. All bottlenecks involved a 100-fold
reduction in population size and lasted 1,000 generations. They
started at 3,500 generations in the past.

FIG. 5. D(P1, P2, P3, O) as a function of the sequencing error
difference e1 � e2. The dotted curve assumes that the probability to
have an error in two populations is equal to the product of
sequencing errors in the two populations (eij 5 ei � ej). The dashed
curve corresponds to eij 5 min(ei, ej)/10, and the solid line assumes
eij 5 min(ei, ej). The horizontal dashed line corresponds to twice the
standard error of D, assuming that sites are independent.
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�7.2� 10�4 (SD5 5.7� 10�3); 2) 6.2� 10�4 (SD5 3.4�
10�3); 3) �2.5 � 10�5 (SD 5 5.5 � 10�3); 4) 3.8 � 10�4

(SD5 3.4� 10�3); and 5)�7.9� 10�5 (SD5 3.5� 10�3).
The IUA model with 5% admixture (f 5 0.05) predicts

D(P1, P2, P3, O)5 0.053 for the demographic parameters we
used (eq. A1.5). The simulated data yielded the following
values: 1) 0.021 (SD 5 4.8 � 10�3); 2) 0.024 (SD 5 3.4 �
10�3); 3) 0.037 (SD 5 6.0 � 10�3); 4) 0.048 (SD 5 3.5 �
10�3); and 5) 0.053 (SD 5 3.5 � 10�3).

Therefore, the simple ascertainment scheme we used
here did not affect the false-positive rate of the test for ad-
mixture. However, it lowered the value of D(P1, P2, P3, O)
for scenarios with 5% admixture. We checked that this re-
sult was consistent for other admixture proportions (not
reported). The difference between the true value and
the observed one was larger when the discovery sample
was taken in P1.

Application to Neandertal
Testing for Admixture between Neandertals and Modern
Humans
Table 1 shows D statistics from Green et al. (2010). D(P1, P2,
P3, O) were significantly positive if P1 is an African individ-
ual (San or Yoruba) and P2 is a non-African individual
(French, Han, or Papuan). When comparing two African
individuals (P15 San and P25 Yoruba) or two non-African
individuals (P1 and P25 French, Han, or Papuan), D did not
differ significantly from 0. Furthermore, D statistics involv-
ing one African and one non-African did not differ signif-
icantly from one another. Significance was assessed using
a standard block jackknife method (Efron 1981). A D value
was considered to be significantly different from 0 when its
absolute value was greater than three times its standard
error. The D statistics are compatible with a scenario where
Neandertals admixed with modern humans outside of Afri-
ca, before Europeans, East Asians, and Melanesians split
(Green et al. 2010).

We note that Green et al. (2010) used about 7,475,200
biallelic sites for the D statistics analysis (Green et al. 2010,
SOM 15). Therefore, we expect the power of the test to be
extremely high. Green et al. (2010) also computed D sta-
tistics using genotype data from the CEPH-Human Ge-
nome Diversity Project panel. D statistics were lower
when computed on SNPs than when computed on se-
quencing data, consistent with the predicted bias of a sim-

ple ascertainment scheme. However, it is remarkable that
although raw values of D statistics changed, the general
conclusion that non-Africans were significantly closer to
Neandertals than Africans held.

Estimating the Proportion of Neandertal Ancestry in Non-
Africans
Taking advantage from the fact that bones from different
Neandertal individuals were available, Green et al. (2010)
estimated the proportion of Neandertal ancestry in non-
Africans as

f̂5
SðAfr;OOA;Nea1;ChimpÞ
SðAfr;Nea1;Nea2;ChimpÞ ; ð15Þ

where Afr is an African sample (San or Yoruba), OOA is a non-
African sample (French, Han, or Papuan), and Nea1 and Nea2
are two Neandertal individuals. The S statistics were averaged
over the different possible combinations of African and non-
African samples. Using the standard errors of S statistics (es-
timated by block jackknife), this yielded an estimate of
f̂ 5 1�4%. However, equation (7) shows that this is a conser-
vative minimum. Green et al. (2010) estimated the population
divergence time of Neandertals and modern humans to be tN

� 270,000 � 440,000 years before present. The time of gene
flow has to occur after modern humans went out of Africa, an
event that took place an estimated tOOA � 45,000 � 100,000
years before present (Forster andMatsumura 2005). Assuming
a constant population size, the bias in the estimator of f is
most important when tN � tOOA is small. In the worst-case
scenario, the bias is equal to (270,000 � 100,000)/100,000
5 0.063. Therefore, a corrected estimate of f in the case of
constant ancestral population size is f* 5 1–6%.

The data are also compatible with a scenario of ancestral
subdivision. Using tP3 5 12,000 generations, tP2 5 3,000
generations, and a constant population size of N 5

10,000, migration rates 1.0 , 2Nm , 2.0 and 15,000 ,

T , 25,000 generations were compatible with the data.
However, we note that the ancestral subdivision has to last
for thousands of generations in order for D to be on the
order of 5% (supplementary fig. S4, Supplementary Mate-
rial online). Such subdivision would require that local pop-
ulations and the geographic barriers that separate them
persist for very long times, much longer than seems reason-
able for highly mobile and adaptable hominins.

Discussion
Asymmetry in three population gene trees is known to oc-
cur in the presence of gene flow (Meng and Kubatko 2009)
or ancestral subdivision (Slatkin and Pollack 2008). Here we
show that asymmetry can be exploited to design a test for
admixture between three closely related populations. The
test requires only the assumption that the ancestral pop-
ulation is randomly mating; it is robust to other demo-
graphic assumptions such as variations in population
size. Moreover, the test is robust to sequencing error if
one assumes that the error rate is the same in the sequen-
ces analyzed. However, if sequencing error rates differ, then
sequencing error can create false positives and that is more
likely to be true if sequencing errors are not independent.

Table 1. Neandertals Share More Genetic Variants With Non-
Africans than With Africans (Green et al. 2010).

P1 P2 D(P1, P2, N, C)

African–African San Yoruba 20.1 6 0.4%
African–non-African San French 4.2 6 0.4%

San Papuan 3.9 6 0.5%
San Han 5.0 6 0.5%
Yoruba French 4.5 6 0.4%
Yoruba Papuan 4.4 6 0.6%
Yoruba Han 5.3 6 0.5%

Non-African–non-African French Papuan 0.1 6 0.5%
French Han 1.0 6 0.6%
Papuan Han 0.7 6 0.6%
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Finally, we illustrated how to constrain the admixture pro-
portion in a simple model of admixture.

Duration and Direction of Gene Flow
The model of admixture as a one-way instantaneous gene
flow event is not intended to be realistic. Instead, instan-
taneous gene flow is the simplest possible admixture model
that enables to derive the D statistic expectation and es-
timate the admixture proportion. In the more realistic case
of ongoing migration, D statistics can be computed numer-
ically using the theory of Markov chains, as illustrated in the
ancient structure model.

Introgression is often asymmetrical between hybridizing
species (Barton and Hewitt 1985; Orive and Barton 2002).
When an expanding population colonizes a new habitat
and hybridizes with previous residents, breeding events at
the front of expansion can result in the substantial introduc-
tion of genes in the expanding population (Currat et al.
2008). As a consequence, detectable ancient admixture is
more likely to be found in extant populations when intro-
gression with archaic populations occurred during a range
expansion, as is thought to be the case for modern humans
and Neandertals (Currat et al. 2008; Green et al. 2010).

However, there are also cases known where detectable
introgression occurs from the invasive population to the
resident species (Hastings et al. 2005). We note that deriv-
ing D statistics when gene flow is bidirectional or in the
other direction is not more difficult, and the same meth-
odology can be applied. If there was gene flow from the
extant population to the archaic one, then any D statistic
involving individuals only from the extant populations
would not be affected. This provides a framework to test
for the direction of gene flow. Taking advantage that Eur-
asians are more closely related to some African populations
than to others, Green et al. (2010) used a similar argument
to rule out substantial gene flow from modern humans to
Neandertals.

Effect of Ascertainment Bias
AlthoughD statistics are primarily designed for sequence data,
they can be readily applied to genotype data. We showed that
the false-positive rate of the test for admixture was not
affected by a very simplified ascertainment scheme where
we subsampled individuals in either P1 or P2. This is because,
in this case, the bias in allele frequencies introduced by the
ascertainment compensated itself in patterns ABBA and
BABA. However, even this very simple ascertainment scheme
lowers the power of the test because the ascertainment
biases sampled SNPs toward higher frequencies, increasing
the counts of pattern ABBA and BABA to a similar extent,
and therefore increasing the denominator of D.

We caution that we used an oversimplified ascertain-
ment scheme. More complex scenarios can introduce bias
in an unforeseen way. For example, if the discovery sample
is from neither P1 nor P2, then the bias will depend on the
genealogical relationships between the population where
SNPs were discovered and P1, P2, and P3. However, we note
that the main conclusion regarding the test for admixture

of Green et al. (2010) held when applied to genotype data.
Still, we stress that the test is likely to be more powerful
using sequencing data. An investigator wishing to apply
the test using genotype data should try to correct allele
frequencies for ascertainment bias. Several approaches
have been proposed to do so (e.g., Clark et al. 2005).

Effect of Recurrent Mutation
Weassumed that each polymorphismwas created by a single
mutation. If mutations were recurrent, then different copies
of the derived allele would arise independently. Hence, many
of the gene genealogies in figure 1 that we ignored in com-
puting the expectation of D would have to be accounted for.
If the outgroup diverged from the lineage leading to the
other populations a long time in the past, as it is the case
for modern humans, Neandertals, and chimpanzees, recur-
rent mutations are likely to occur on the long branch leading
to the outgroup. As a consequence, genealogies Ib, IId, and
IIIb would create the pattern BABA and genealogies Ia, IIa,
and IIId would create the pattern ABBA (see fig. 1). If there is
no gene flow from P3 to P1 or P2, and if the mutation rate is
the same in the three populations, then Ia 5 Ib, IId 5 IIId,
and IIIb 5 IIa (where the equal sign denotes that corre-
sponding trees occur with equal frequencies). Therefore, re-
current mutations are not expected to increase the false-
positive rate of the test for Neandertal admixture. In the case
where P1, P2, P3, and O are more diverged from each other
(e.g., modern humans, chimpanzee, gorilla, and orangutan),
recurrent mutations are likely to occur on other branches as
well. Recurrent mutations on the terminal branches leading
to P1 and P2 could potentially increase the false-positive
rate of the test for admixture.

In the presence of gene flow, it is difficult to predict
whether recurrent mutation increases or decreases D.
The exact result depends on details of the demographic
model, but the effect is proportional to the probability that
a second mutation occurs and the constant of proportion-
ality is less than one because many of the gene genealogies
still have no effect on D. Still, recurrent mutations can af-
fect the power of the test for admixture.

We also note that differing mutation rates in the P1 and
P2 populations since their divergence are not expected to
bias D. The reason for this is that by restricting to sites
where P3 is derived relative to the outgroup O, we are re-
stricting the analysis to mutations that arose prior to di-
vergence of the ancestral populations of P1, P2, and P3.

Effect of Mapping Errors
We assumed that the sequences from P1, P2, P3, and O were
aligned to a common sequence without error. Depending
on the nature of the sampled populations and the sequenc-
ing technology, different alignment strategies may be used.
Green et al. (2010) aligned the Neandertal sequence both
to the reference human and to the chimpanzee genomes
(hg18 and panTro2). Different aligners were used depend-
ing on the technology used to sequence the Neandertal
and modern humans genomes used in the study. Because
of the variety of the alignment strategies, it is difficult to
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model the effect of mapping error on D statistics in a gen-
eral framework.

The extent to which D statistics will be affected depends
on which sample is more prone to mapping error. Let us
assume that all sequences were aligned to the outgroup O.
Mapping errors in the P3 sequence are likely to have a neg-
ligible effect on the false-positive rate of the test for admix-
ture. This is because mismapping in P3 will equally affect
patterns ABBA and BABA. However, alignment error in
P3 can affect the power of the test if it artificially increases
the counts of patterns ABBA and BABA. Mapping errors in
P1 or P2 can have a strong effect on the false-positive rate of
the test. Mismapping in P1 will cause P2 and P3 to match
each other artificially too often (therefore increasing the
count of the ABBA pattern). Thus, it is crucial to test
the effect of mapping error in P1 or P2. One possible ap-
proach is to stratify the data into categories based on
the read coverage in sequences P1 and P2 and to compute
D(P1, P2, P3, O) in each category. If mapping is not an issue,
then D should remain stable in categories where the cov-
erage is high enough.

Effect of Natural Selection
We implicitly assumed selective neutrality in all our anal-
yses. For natural selection to bias the test for admixture, it
must increase the number of derived alleles shared by P3
and P1 or P2. The ABBA and BABA patterns in Green et al.
(2010) were distributed genome wide. Therefore, it seems
unlikely that the observed D statistics in Green et al. (2010)
were biased by natural selection.

However, when the data consist of a few loci, natural
selection could potentially bias D statistics by increasing
the number of derived alleles in, say, P2. It would result
in P2 matching P3 more often than P1, even if there was
no admixture. The exact effect of natural selection on D
statistics remains a subject of further investigation.

Distinguishing between Gene Flow and AS
We showed that D statistics do not allow us to distinguish
between the models of admixture and ancestral subdivi-
sion because ancestral subdivision and admixture can
produce the same expected coalescence time between
two individuals from different populations. However, it
is known that ancestral population subdivision results in
a higher than expected variance in coalescence times (Wall
et al. 2009). Therefore, ancestral subdivision is likely to re-
sult in more variation in gene tree depth when using several
samples from the extant population. This in turn will affect
the site frequency spectrum of the extant population (Har-
pending et al. 1998). Designing a statistic to distinguish be-
tween the two scenarios will require using more than one
sample per population.

Concluding Remarks
Inference of ancient admixture is usually limited by the lack
of archaic DNA sequence data. Most methods so far have
focused on detecting the expected signature of ancient ad-

mixture in extant genomes.Herewe studied thebehavior of
a test statistic for ancient admixture based on the direct
comparison of DNA sequences of three closely related
populations. Our derivation of this test statistic under
alternative demographic models showed how to robustly
estimate the archaic contribution to extant populations.
We demonstrated that our approach can also be applied
when no archaic population has been sampled. This paper
illustrates the advantage of using one sample per popula-
tion, which greatly simplifies inference by removing the in-
fluence of many demographic assumptions that are not
testable in most situations.

Supplementary Material
Supplementary figures S1–S4 are available at Molecu-
lar Biology and Evolution online (http://www.mbe
.oxfordjournals.org/).
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Appendix A. Derivation of D under the
Model of Gene Flow

Here we present the detailed derivation ofD(P1, P2, P3, O)
under the IUAmodel. For simplicity of notations, we assume
that the population size in P(123) is constant and equal to
N(123). However, the derivations can be easily extended for
arbitrary varying population size in P(123). There are three
classes of event that can produce patterns ABBA and BABA.

1. The P2 lineage traces its ancestry through the P(12) side
of the phylogeny (probability 1�f), and between tP2 and
tP3, the P1 and P2 lineages do not coalesce�

probability e
�
Ð tP3

tP2

1
2Nð12ÞðxÞ

dx
�

.

Pr1ðABBAÞ5 Pr1ðBABAÞ

5
2Nð123Þlð1 � fÞ

3
e
�

ðtP3

tP2

1

2Nð12ÞðxÞ
dx
:

ðA1:1Þ

2. The P2 lineage traces its ancestry through the P3 side of the
phylogeny (probability f), and between tGF and tP3, the two

lineages do not coalesce

�
probability e

�
Ð tP3

tGF

1
2N3ðxÞ

dx
�

.

Pr2ðABBAÞ5 Pr2ðBABAÞ5
2Nð123Þlf

3
e
�
Ð tP3

tGF

1
2N3ðxÞ

dx
: ðA1:2Þ

3. The P2 lineage traces its ancestry through the P3 side of the
phylogeny (probability f), and between tGF and tP3, the two
lineages coalesce. This history creates gene genealogies
only of type III and results only in ABBA sites (never BABA
sites in the absence of recurrent mutation in the same
genealogy). The probability that there is a coalescence

before tP3 is

�
1� e

�
Ð tP3

tGF

1
2N3ðxÞ

dx
�
. Once the coalescence

occurs, the ancestral lineage cannot coalesce with P1
before tP3. After tP3, the average coalesce time is 2N(123).
Therefore, the expected length of the internal branch is
tP3 þ 2Nð123Þ � ðtGF þ �tÞ, where �t is the expected co-
alescence time between P2 and P3, given that the
coalescence occurs before tP3. A short analysis shows that

�t5
1

1 � e
�
Ð tP3

tGF

1
2N3ðxÞ

dx

ðtP3

tGF

t

2N3ðxÞ
e
�
Ð t

tGF

1
2N3ðxÞ

dx
dt: ðA1:3Þ

Thus,

Pr3ðABBAÞ5 lf

"
1 � e

�

ðtP3

tGF

1

2N3ðxÞ
dx
#"

tP3 þ 2Nð123Þ

� tGF �

ðtP3

tGF

t

2N3ðtÞ
e
�
Ð tP3

tGF

1
2N3ðxÞ

dx
dt

1 � e
�

ðtP3

tGF

1

2N3ðxÞ
dx

#
:

ðA1:4Þ

The overall probability of ABBA and BABA is obtained by
adding, and the mutation rate parameter l cancels. There-
fore,Appendix B

Here we present the detailed derivation of D(P1, P2, P3,
O) under the AS model. At time T, there are six possibilities
depending on the states of the Markov chain running in
P(123).
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Appendix B

1. No coalescence event occurred

This case corresponds to states 1, 2, 3, and 4 of the Mar-
kov chain in P(123). It contributes equally to ABBA and
BABA:

Pr1ðABBAÞ5 Pr1ðBABAÞ5
2Nl
3

X4
i5 1

pð123Þi ðTÞ: ðA2:1Þ

2. P1 and P2 lineages coalesced

This case does not contribute to ABBA and BABA.

3. P2 and P3 lineages coalesced, but not the P1 lineage

This case corresponds to states 5 and 8 of the Markov
chain in P(123). It does not contribute to BABA. Its contri-
bution to ABBA is

Pr3ðABBAÞ5 ðpð123Þ5 þ pð123Þ8 ÞðTÞlð2N þ T � tP3 � t�23Þ;
ðA2:2Þ

where t�23 is the expected time of coalescence of the P2 and P3
lineages given that coalescence occurs between tP3 and T.

4. P3 and P1 lineages coalesced, but not the P2 lineage

This case corresponds to states 6 and 9 of the Markov
chain in P(123). It does not contribute to ABBA. Its contri-
bution to BABA is, similarly to case (3),

Pr4ðABBAÞ5 ðpð123Þ6 þ pð123Þ9 ÞðTÞlð2N þ T � tP3 � t�13Þ:
ðA2:3Þ

5. P3 and P2 lineages coalesced first and then with the P1
lineage.

This case corresponds to state 11 of the Markov chain in
P(123). It does not contribute to BABA. Its contribution to
ABBA is

Pr5ðABBAÞ5 pð123Þ11 ðTÞlðt��1 � t�23Þ; ðA2:4Þ

where t��1 is the expected time of coalescence of the P1 lineage,
given that coalescence occurs between t�23 and T.

6. P3 and P1 lineages coalesced first and then with the P2
lineage.

This case corresponds to state 12 of the Markov chain in
P(123). It does not contribute to ABBA. Similarly to case (5),
its contribution to BABA is

Pr6ðABBAÞ5 pð123Þ12 ðTÞlðt��2 � t�13Þ; ðA2:5Þ

where t��2 is the expected time of coalescence of the P2 lineage,
given that coalescence occurs between t�13 and T.

The conditional expected coalescence times, t�23, t�13, t��1 ,
and t��2 are computed using standard Markov chain theory
as the expected times of first hit of corresponding states
given that the hit occurred before time T. We have

t�23 5
X4
i5 1

pð12Þi ðtP3Þ
XT

t5 tP3

t

�
ðPð123ÞðtÞ � Pð123Þðt � 1ÞÞ½i; 5�

pð123Þ5 ðTÞ

þ ðPð123ÞðtÞ � Pð123Þðt � 1ÞÞ½i; 8�
pð123Þ8 ðTÞ

�
:

ðA2:6Þ

The other conditional expected coalescence times are
computed similarly. There is no simple analytic expression
for D.

E½D�5 PrðABBAÞ � PrðBABAÞ
PrðABBAÞ þ PrðBABAÞ
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